A Geometric Hidden Markov Tree Wavelet Model

نویسندگان

  • Justin Romberg
  • Michael Wakin
  • Hyeokho Choi
  • Richard Baraniuk
چکیده

In the last few years, it has become apparent that traditional wavelet-based image processing algorithms and models have significant shortcomings in their treatment of edge contours. The standard modeling paradigm exploits the fact that wavelet coefficients representing smooth regions in images tend to have small magnitude, and that the multiscale nature of the wavelet transform implies that these small coefficients will persist across scale (the canonical example is the venerable zero-tree coder). The edge contours in the image, however, cause more and more large magnitude wavelet coefficients as we move down through scale to finer resolutions. But if the contours are smooth, they become simple as we zoom in on them, and are well approximated by straight lines at fine scales. Standard wavelet models exploit the grayscale regularity of the smooth regions of the image, but not the geometric regularity of the contours. In this paper, we build a model that accounts for this geometric regularity by capturing the dependencies between complex wavelet coefficients along a contour. The Geometric Hidden Markov Tree (GHMT) assigns each wavelet coefficient (or spatial cluster of wavelet coefficients) a hidden state corresponding to a linear approximation of the local contour structure. The shift and rotational-invariance properties of the complex wavelet transform allow the GHMT to model the behavior of each coefficient given the presence of a linear edge at a specified orientation — the behavior of the wavelet coefficient given the state. By connecting the states together in a quadtree, the GHMT ties together wavelet coefficients along a contour, and also models how the contour itself behaves across scale. We demonstrate the effectiveness of the model by applying it to feature extraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contextual Hidden Markov Tree Model for Signal Denoising

The hidden Markov tree (HMT) model is a novel statistical model for signal and image processing in the wavelet domain. The HMT model captures the interscale persistence property of wavelet coefficients, but includes only a tiny intrascale clustering property of wavelet coefficients. In this paper, we propose the contextual hidden Markov tree (CHMT) model to enhance the clustering property of th...

متن کامل

Context-based graphical modeling for wavelet domain signal processing

Wavelet-domain hidden Markov tree (HMT) modeling provides a powerful approach to capture the underlying statistics of the wavelet coefficients. We develop a mutual information-based information-theoretic approach to quantify the interactions between the wavelet coefficients within a wavelet tree. This graphical method enables the design of a context-specific hidden Markov tree (HMT) by adding o...

متن کامل

Denoising in Wavelet Domain Using Probabilistic Graphical Models

Denoising of real world images that are degraded by Gaussian noise is a long established problem in statistical signal processing. The existing models in time-frequency domain typically model the wavelet coefficients as either independent or jointly Gaussian. However, in the compression arena, techniques like denoising and detection, states the need for models to be nonGaussian in nature. Proba...

متن کامل

Unsupervised Multiscale Focused Objects Detection Using Hidden Markov Tree

In this paper we introduce an unsupervised statistical approach to segment sharply focused objects in low depth of field (DOF) images using the Hidden Markov Tree (HMT) model which is based on the wavelet domain. A multiscale statistical description of high frequency wavelet coefficients is applied to segment the focused objects from background and foreground. Using the Hybrid Contextual Labeli...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003